А.И. Тимурзиев, Г.Н. Гогоненков, (ОАО “ЦГЭ”)
* Продолжение статьи из цикла публикаций, посвященных горизонтальным сдвигам фундамента Западной Сибири (см. № 3, 2007).
Структурная позиция Еты-Пуровского вала
в границах элементов тектонического районирования Западной Сибири. Приведем представления о структурно-тектоническом строении и формационном составе верхней части земной коры Еты-Пуровского вала на основе работ [1, 3, 4], переработанные с учетом геологической интерпретации нового сейсмического материала. В геологическом строении верхней части земной коры Еты-Пуровского вала и севера Западной Сибири выделяют три структурно-формационных этажа различной стратиграфической полноты, разделенные резкими угловыми и стратиграфическими несогласиями:
Структурно-формационные этажи Западной Сибири перекрывает четвертичный покровный чехол различной полноты. Выделенным структурно-формационным этажам отвечают общепланетарные тектонофазы развития Земли:
Первые два структурных этажа по характеру формационного состава и режиму тектонического развития рассматриваются в составе фундамента молодой эпигерцинской платформы. Кристаллический докембрийской фундамент и гранитно-метаморфический слой образуют комплекс основания герцинид (геосинклинального комплекса герцинской складчатости) для рифтовой стадии развития Западной Сибири, третий структурный этаж входит в состав плитного ортоплатформенного чехла. Структура фундамента и синрифтового комплекса Западной Сибири восстановлена по данным гравимагнитным, глубокого бурения и глубинного сейсмического зондирования (ГСЗ) и КМПВ (Бочкарев В.С., 1994; [2-5]). Для Западно-Сибирской плиты с ее гетерогенным позднедокембрий-раннепалеозойским фундаментом кровля геосинклинальных комплексов также не гомогенная. С учетом региональных сейсмических данных ГСЗ, КМПВ и МОВ гравитационное поле севера Западной Сибири свидетельствует о ступенчатом погружении подошвы осадочного выполнения (поверхности геосинклинальных комплексов) к осевой части впадины на глубину 5-8 км и более. Интенсивные положительные полосовые гравитационные аномалии меридионального простирания в плане совпадают с интенсивными положительными линейными магнитными аномалиями. В рельефе поверхности доюрского и особенно складчатого (геосинклинального) фундамента этим аномальным полосам соответствуют глубокие грабены, амплитуда которых на севере достигает 4-5 км. Глубокими скважинами здесь вскрыты эффузивно-осадочные породы триасового возраста, эффузивные и интрузивные породы базальтоидного ряда [3], в основании которых геосинклинально-складчатый комплекс практически отсутствует и развиты породы основного состава [5]. В пределах центральной части севера Западной Сибири (Уренгойско-Колтогорский гравитационный максимум) происходит встречный подъем верхней мантии (глубина залегания поверхности Мохоровичича здесь минимальная для Западной Сибири – 25-30 км), приведший к частичной редукции и к сокращению до выполаживания мощности гранитного слоя [3]. В пределах осевой части Западной Сибири произошла базификация (океанизация) континентальной коры с сокращением мощности гранитного слоя (эрозионный размыв верхней коры и гидротермально-метасоматическая и магматическая переработка нижней коры над мантийным астенолитом: эклогитизация и дегидратация серпентинитов). Образование базальтового окна и формирование океанической коры не произошли в силу кратковременности рифтовой стадии развития севера Западной Сибири. Такое строение земной коры Западной Сибири ставит ее в один ряд с уникальными осадочными бассейнами (Прикаспийский, Южно-Каспийский, Мексиканский, Североморский), испытавшими на ранних этапах формирования антиклизный режим развития, связанный со всплытием и длительным стоянием астеносферного мантийного диапира. Интенсивное воздействие разновременных и разной спецификации глубинных магматических и гидротермальных процессов (в зависимости от глубины и истощенности мантийных питающих систем) предопределило магматическую проработку, гидротермальный метаморфизм и метасоматическую переработку глубинными эманациями не только фундамента (основной и ультраосновной магматизм) и синрифтового комплекса (преимущественно базальтоидный и кислый магматизм) Западной Сибири. По данным Ф.А.Летникова (2006), амагматическая низкотемпературная деструкция кристаллической коры восстановленными флюидами определила глинисто-кремнистую спецификацию (опоковые глины, опоки, диатомовые глины и диатомиты) и хемогенную природу осадочного чехла (максимум в палеогене) Западной Сибири. В связи с разгрузкой огромных объемов легких дифференциатов возбужденного астенолита, остыванием и утяжелением верхней мантии, с позднего триаса началось погружение кровли фундамента. Разрастание бассейна седиментации над первичными грабен-рифтами осевой части Западно-Сибирского палеоподнятия и компенсированное осадконакопление обеспечивали гравитационную устойчивость земной коры в пределах Западно-Сибирской впадины. Завершающая сдвиговая стадия развития Западной Сибири герцинского тектогенеза отличалась интенсивными вертикальными и горизонтальными движениями земной коры вдоль ступенчатых сбросов и взбросов. Кумулятивные амплитуды вертикальных перемещений блоков фундамента, запечатленные в перепадах мощностей синрифтового комплекса, доходят до 3-5 км [3]. Амплитуды горизонтальных сдвигов, закартированные в эшелонированном смещении блоков фундамента Шаимского района, достигают 6-16 км (Иванов К.С., Ерохин Ю.В., Погромская Э.О. и др., 2004), а в осевой части Западно-Сибирской мегасинеклизы могут быть существенно выше. На тектонических картах районирования Западной Сибири [2] Еты-Пуровская площадь расположена в южной части Етыпурского мегавала – тектонического элемента I порядка. Одноименный малый Еты-Пуровский вал образует двухкупольное локальное осложнение на Етыпурском мегавале и, совместно с Вынгапуровским, Варьеганским, Уренгойским и другими линейными мегавалами, цепочку кулисных приразломных мегаструктур, осложняющих надрегиональную Колтогорско-Толькинскую шовную зону. Последняя на продолжении с Нижнепуровским мегапрогибом является отражением структуры Колтогорско-Уренгойского палеорифта, раскрывающегося на север в сторону Карского моря. Выделяемый на севере центральной части Западной Сибири Колтогорско-Уренгойский грабен-рифт граничит своим западным ступенчатым бортом с Еты-Пуровским малым валом. Такая структурная позиция определила высокую мобильность последнего на завершающих этапах герцинского и альпийского тектогенеза, особенности блоковой структуры и проницаемости земной коры для вертикальной миграции УВ и формирования многопластового Еты-Пуровского месторожения. Региональная зональность пространственных соотношений тектонических элементов I порядка (мегасводы и мегапрогибы) и группирования тектонических элементов II (своды и прогибы) и III порядков (локальные поднятия и седловины), особенности внутреннего строения и простирание границ распространения структурно-формационных зон и комплексов подчеркивают диагональный (северо-западного и северо-восточного простираний) рисунок каркаса глубинных разломов фундамента, на основе которого зарождалась и формировалась внутренняя структура синрифтового триас-палеозойского и нормально-осадочного мезо-кайнозойского комплексов Западной Сибири. Площадь распространения, особенности формационного состава и внутренняя структура синрифтового пермотриасового комплекса, имеющие сложное внутреннее строение со следами шовной складчатости герцинского тектогенеза и глубокого предъюрского размыва и отражающие рифтогенный геодинамический режим развития земной коры в позднепалеозой-раннемезозойское время, недоступны для изучения при текущем качестве сейсмических данных в интервале доюрского разреза Еты-Пуровского вала. С учетом данных глубокого бурения по соседним площадям и общей структурной позиции района в границах тектонического районирования Западной Сибири материалы интерпретации сейсморазведки 3D и палеотектонические реконструкции указывают на инверсионно-складчатый морфологический тип тектонической зоны, связанной с современными структурами Еты-Пуровского и Вынгапуровского мегавалов. Эти современные валы являются новообразованными позднекайнозойскими структурами, переработавшими и спаявшими в процессе своего развития разновозрастные и принципиально различные структурно-тектонические блоки на теле фундамента. Структура домезозойского фундамента Еты-Пуровского вала.
Породы доюрского основания Еты-Пуровского вала не вскрыты скважинами, состав и их внутренняя структура на площади не изучены, поэтому в статье рассматриваются по данным бурения соседних площадей. Внутренняя структура фундамента.
Самой нижней сейсмической отражающей границей, позволяющей осуществить площадные построения, является кровля доюрского основания (горизонт А). Будучи не стратиграфической границей, а поверхностью регионального несогласия (углового и стратиграфического), приуроченного к различным структурно-формационным комплексам, эта поверхность не позволяет получить достоверные представления о внутреннем строении фундамента. Она отражает результат завершающих инверсионно-складчатых движений герцинского тектонического этапа, заметно искаженный процессами раннеюрской денудации и позднекайнозойскими перестройками, и лишь частично характеризует внутренние структурно-тектонические особенности нижележащего комплекса основания. По данным [3], центральная погруженная часть Западно-Сибирской плиты сложена флишоидной, карбонатной, карбонатно-терригенной и аспидной формациями. В целом – это область развития различных сланцев низких стадий регионального метаморфизма, гранитных батолитов, кислого эффузивного магматизма и осадочных пород карбонатного состава. Возраст пород средний – поздний палеозой. На схемах тектонического районирования [1–3] основание Еты-Пуровского вала сформировано средне-верхнепалеозойским фундаментом герцинской консолидации, имеет терригенно-карбонатное выполнение и пронизано кислыми интрузиями гранитов и гранодиоритов. Восточнее и южнее Еты-Пуровского вала в пределах осевых частей Худуттейского и Колтогорско-Уренгойского рифтов развиты нижнепалеозойские метаморфиты высокотемпературных фаций (гнейсы, кристаллические слюдистые и кремнистые сланцы) и интрузивные комплексы основного состава (базиты) триас-палеозойского возраста. Южнее Еты-Пуровского вала в пределах соседней Ярайнерской площади породы фундамента вскрыты в разведочных скв. 18 и 23. Доюрские образования в скв.18 (интервал 3990-4100 м) представлены миндалевидными базальтами и доломитобазальтами, возраст которых определен как Т1-PZ (Бочкарев В.С., 1994). В скв. 23 (интервал 3868-4100 м) вскрыты диабазы и андезитобазальты калий-натриевого состава раннедевонского возраста (D11). На границе юрских и палеозойских пород, как правило, фиксируется кора выветривания, представленная выветрелыми, трещиноватыми и каолинизированными породами толщиной до 100 м. Особенности формационного состава и возраста верхней части фундамента находят свое проявление в особенностях строения гравитационного и магнитного полей. Геосинклинальные комплексы, представленные кремнистыми и глинистыми сланцами, интрудированными гранитоидами, характеризуются линейными отрицательными гравитационными и магнитными аномалиями, совпадающими в плане с линейными поднятиями современной поверхности фундамента. Геосинклинальные комплексы, состоящие из карбонатных пород и сланцев глубокой степени метаморфизма, характеризуются преимущественно изометричными положительными гравитационными и переменного знака магнитными аномалиями, положительными и отрицательными отметками современного рельефа фундамента [3]. Характер сейсмической записи 3D не позволяет уверенно выделить стратифицированные сейсмофациальные комплексы внутри фундамента (рис.1). Однако развитие нормально-осадочных отложений (тафрогенный комплекс) предположительно низкой степени метаморфизма прослеживается в центральной сводовой части Еты-Пуровского вала до глубины 5000 м. Анализ сейсмической записи, истории развития и строения доюрского комплекса севера Западной Сибири позволяет предположить инверсионную природу герцинской складчатости и развитых на ее основе положительных платформенных форм, заложенных на палеорифтовых грабен-прогибах познепалеозой-раннемезозойского времени.
Внутренняя структура фундамента до конца не понятна, ее изучение представляет самостоятельную геологическую задачу в рамках дальнейшего освоения Еты-Пуровского месторождения. Решению ее отчасти будет способствовать бурение глубоких скважин со вскрытием фундамента (235R), производимое по рекомендациям ОАО “ЦГЭ”. Наличие отражающих площадок внутри фундамента с учетом его формационного состава по описаниям керна скважин соседних площадей указывает на отсутствие регионального метаморфизма доюрского комплекса, что исключает его полнокристаллическое строение и увеличивает перспективы нефтегазоносности (см. рис. 1). Это позволяет рассматривать доюрский фундамент Еты-Пуровского вала в качестве нового перспективного нефтегазоносного комплекса. Структура кровли доюрского фундамента Еты-Пуровского вала.
Сейсмический отражающий горизонт А стратифицируется в пределах Еты-Пуровского вала как кровля доюрского основания. Он же является подошвой мезозойских отложений осадочного чехла. Морфологически и генетически эта сложнопостроенная поверхность эрозионного выравнивания, секущая разновозрастные породы различного формационного состава (выступы плотных интрузивных, полнокристаллических и метаморфизованных пород, вулканогенные терригенно-карбонатные и нормально-осадочные породы ранней стадии метаморфизма, линзы базальных грубообломочных терригенных отложений), может быть отнесена к коре выветривания фундамента. Известная как поверхность герцинского несогласия, она знаменует собой переход Западной Сибири к режиму платформенного развития и континентального осадконакопления. Об этом свидетельствует повсеместно развитая в основании изученных разрезов нижней юры Западной Сибири базальная толща (аналог шеркалинской свиты) грубообломочных конгломератов и гравелитов – продуктов разрушения выступов доюрского основания. Тектоническое районирование фундамента Еты-Пуровского вала.
В пределах Еты-Пуровского вала выделяются два крупных структурных элемента, определяющие общий морфологический облик поверхности и особенности тектонического строения доюрского фундамента (рис. 2). Первый – высокоамплитудный положительный структурный элемент – связан с выступом фундамента Южного блока*. Южный блок занимает 1/3 площади работ 3D и имеет средний гипсометрический уровень -3900 м (-3680...-4050). Второй, Северный блок – отрицательный структурный элемент на теле Еты-Пуровского вала, представляет фрагмент синклинального прогиба меридионального простирания, расположенный в пределах современного Северного купола и Центрального блока в терминах районирования платформенного чехла. Северный блок фундамента занимает 2/3 площади Еты-Пуровского вала и имеет средний гипсометрический уровень -4250 м (-4050...-4450). * Здесь и далее, при отсутствии общепринятых, нами даются новые термины элементов тектонического районирования Еты-Пуровского вала.
Границей между Северным и Южным блоками фундамента служит региональный разлом северо-восточного простирания (30-50о), трассируемый по материалам сейсморазведки 2D за пределами куба 3D через Валынтойскую площадь и Восточно-Етыпуровское поднятие до восточной оконечности Усть-Харампурской площади. В пределах Еты-Пуровской площади разлом проходит параллельно створу скв. 171R-3R-178R и уходит на юго-восток за пределы площади работ 3D. В пределах погруженного Северного блока фундамента выделяются две линейные валообразные горст-антиклинальные зоны (Центральная и Северная), пересекающиеся между скв. 82R и 87R. 1. Северная горст-антиклинальная зона фундамента северо-западного (330-340о) простирания с северо-запада на юго-восток проходит в створе скв. 89R-177R-87R-82R, между скв. 176R-208R и далее уходит на юго-восток за пределы площади работ 3D. Размеры 25,0x(1,5-2,0) км по замкнутой изогипсе -4260 м, амплитуда от 125 м (район скв. 82R) до 175 м (район скв. 87R). 2. Центральная горст-антиклинальная зона фундамента субмеридионального (350о-10о) простирания с севера на юг проходит в створе между скв. 175R-170R, затем в створе скв. 82R-88R-5R на юг через скв. 171R-3R-185R-22R-196R и далее уходит на юг за пределы площади участка 3D. Размеры 50х(2,5-5,0) км по замкнутой изогипсе -4260 м, амплитуда от 140 м (район скв. 5R) до 175 м в своде Южного блока. Со смещением поперечными разломами северо-восточного простирания Северная горст-антиклинальная зона образует единый вал как шовную и, очевидно, проницаемую зону деструкции доюрского фундамента. Между Центральной и Северной горст-антиклинальными зонами Северного блока проходит узкий грабен-прогиб (Центральный грабен) северо-северо-западного простирания (330-350о) с осью в створе скв. 20R-173R-231R-208R и далее на юго-юго-восток за пределы площади участка 3D. Ширина Центрального грабена по кровле доюрского фундамента достигает 2-3 км при протяженности до 30 км и глубине от 50-75 до 150-175 м. В осадочном чехле положению Центрального грабена фундамента отвечает наложенная структура вторичного обрушения горных пород – линейный симметричный грабен, проходящий в осевой части шовной зоны сдвига. На дневной поверхности грабен фундамента отображается отрицательной морфоструктурой рельефа. Эти связи на фоне устойчивого присутствия линейного грабен-прогиба на всех стратиграфических уровнях, а также выраженности в мощностях осадочного чехла характеризуют Центральный грабен фундамента как сквозную инверсионную структуру центрального типа, новообразованную на альпийском этапе тектонического развития Еты-Пуровского вала. 3. Южный блок фундамента Еты-Пуровского вала является древней структурой доюрского заложения, на которой формируется и с ранней юры унаследовано развивается изометричное локальное поднятие Южного купола. Амплитуда поднятия по замкнутой изогипсе -4040 м в границах площади работ 3D превышает 450 м при размерах 12·10 км. В строении Южного блока выделяются три структурные линии северо-восточного простирания, связанные с разломами фундамента. На фоне северо-восточного простирания горст-антиклинальных линий Южного блока их выступы образуют поперечную, меридиональную линию группирования локальных блоков фундамента (см. рис. 2). Морфометрическая характеристика поверхности фундамента.
Максимальная отметка кровли фундамента (-3680,5 м) находится в пределах свода Южного блока Еты-Пуровского вала, минимальные отметки (-4464,5 м) фиксируются в западной части и на северо-востоке (-4442 м) площади работ. В центральной осевой зоне прогиба минимальные отметки варьируют от -4320 до -4377 м. На юг кровля фундамента резко воздымается в сторону Южного блока. Видимый размах амплитуд по кровле фундамента на площади работ 3D составляет 785 м. Учитывая, что площадь работ 3D не включает периклинальные и крыльевые части Еты-Пуровского вала, видимый фрагмент структуры не дает преставления об истинной амплитуде поднятия. По данным интерпретации материалов 2D и 3D минимальные отметки составляют -4783,4 м на восточной оконечности площади (Восточно-Етыпуровский прогиб), -4910,5 м на западной оконечности (Западно-Етыпуровский прогиб) и -5445,8 м на южной оконечности Еты-Пуровского вала. Истинный размах высотных отметок по кровле фундамента достигает 1765 м. Среднее значение градиента наклона поверхности фундамента 50-70 м/км (угол наклона 3-4о) при максимальных значениях 200 м/км (угол наклона до 11,5о) в приразломных участках. По морфологическим признакам для доюрского комплекса Северного блока характерна линейная (альпинотипная) складчатость продольного изгиба, для Южного блока – куполовидная (германотипная) складчатость поперечного изгиба. Характер деформаций структур доюрского комплекса позволяет предполагать, что линейная складчатость Северного блока развивалась на основе деформаций пластичного складчатого основания пермотриасового возраста, а куполовидная складчатость Южного блока – на основе деформаций жесткого основания раннепалеозой-протерозойского возраста или фрагмента древнего срединного массива кристаллического фундамента. Локальные выступы фундамента и ловушки УВ.
По кровле доюрского фундамента выделяется группа локальных поднятий, представляющих собой тектонические блоки и эрозионные выступы – останцы раннеюрского палеорельефа, унаследованное развитие которых на платформенном этапе привело к заметному приросту их амплитуд. Характерной особенностью поднятий является их группировка в линейные валы северо-западного и меридионального простираний (Северный блок), северо-восточного и меридионального простираний (Южный блок), образующие ромбический рисунок строения Еты-Пуровского вала. Такой рисунок строения поднятий предопределен их блоковой природой и тектоническим контролем. Структуроформирующая роль разломов подчеркивается флексурным ограничением локальных поднятий и их структурных линий. В соответствии с механизмом дискретно-прерывистого и амплитудно-резонансного возбуждения блоков земной коры вдоль простирания региональных разломов происходит формирование выступов фундамента в узлах пересечения активизированных разломов. Положение Южного блока как основного структурного выступа фундамента совпадает с узлом пересечения Центральной горст-антиклинальной зоны с поперечными разломами фундамента северо-восточного простирания (Северная и Центральная зоны сдвигов фундамента Южного блока Еты-Пуровского вала). По простиранию горст-антиклинальных зон происходит ундуляция их длинных осей с формированием локальных выступов фундамента. Развитые на теле горст-антиклинальных зон локальные выступы фундамента (в пределах Центральной зоны выделяется 14, а в пределах Северной зоны – 7 блоков) рассматриваются перспективными объектами для поисков залежей УВ. Блоковое строение фундамента, его фациальная гетерогенность и эрозионная природа поверхности не позволяют без дополнительного анализа связывать морфологические формы по кровле фундамента с антиклинальными поднятиями полного контура. Учитывая связь горст-антиклинальных зон с горизонтальными сдвигами фундамента и генетически связанными с ними структурами растяжения кулисного оперения сдвигов, многие из локальных блоковых поднятий могут служить ловушками для аккумуляции УВ. Характер строения горст-антиклинальных зон, их дизъюнктивная предопределенность и сбрососдвиговая кинематика (динамические условия транстенсии) предопределяют формирование залежей жильного (пластово-жильного) и конического (инъекционно-диапирового) типов внутри фундамента и линейных кор выветривания в его кровле. Положение СГС на теле фундамента.
Рассмотрим положение СГС на теле фундамента Еты-Пуровского вала как возможную форму их унаследованности от региональных тектонических швов доюрского заложения. По кровле фундамента разломы Еты-Пуровского вала развиты в пределах валообразных горст-антиклинальных структур и образуют четыре системы: меридионального (350-360о), северо-восточного (40-60о), северо-северо-восточного (20о) и северо-западного (320-340о) простираний (рис. 3). Разломы северо-западного и северо-восточного румбов имеют сбрососдвиговую и взбрососдвиговую кинематику (динамические условия транстенсии и транспрессии) и формируют диагональную систему региональных сдвигов фундамента Западной Сибири. Разломы меридионального простирания имеют сбрососдвиговую кинематику и формируют систему кулисного оперения региональных сдвигов фундамента и сопряженных грабен-горстовых структур чехла. Разломы диагональной системы имеют древнее догерцинское заложение на теле фундамента, осложнены структурными перестройками герцинского и альпийского тектогенеза и поперечными более молодыми меридиональными разломами.
В строении разломов фундамента Еты-Пуровского вала проглядывает ромбическая диагональная сеть первичной делимости земной коры, запечатленная в современной морфоструктуре благодаря деформациям герцинского и альпийского тектогенеза. Проявлением диагональной системы разломов обусловлена и асимметрия в морфологии структурной поверхности фундамента (и вышележащих горизонтов осадочного чехла) с диагональным расположением эпицентров поднятий и прогибов и простиранием (и падением) структурных поверхностей на площади работ 3D. Во фрагментах, закартированных по кровле фундамента разрывных нарушений, проглядывают связь линейных горст-антиклинальных зон с глубинными разломами фундамента и приразломная шовная природа связанной с ними складчатости. Таким образом, по результатам структурного анализа можно констатировать, что морфология кровли доюрского фундамента характеризуется отчетливым блоковым строением, сформирована на каркасе разломов диагональной системы, имеющих сбросо/взбрососдвиговую кинематику. В отношении кинематики разломов основных систем можно высказать предположения, основанные на косвенных геологических признаках. Если считать, что закрытие Колтогорско-Уренгойского грабен-рифта происходило в результате широтного сжатия завершающей фазы герцинского тектогенеза, положение осей напряжений предполагает правостороннюю кинематику для северо-восточных разломов и левостороннюю – для северо-западных. Возникшие по [3] на синклинорных зонах унаследованного развития раннемезозойские впадины и грабены в пределах герцинской складчатости северо-восточного простирания имеют левокулисное строение, что было предопределено также левосдвиговыми деформациями по северо-западным поперечным разломам. В то же время ромбический рисунок и близмеридиональное положение биссектрисы острого угла, образуемое системами разломов фундамента диагональной динамопары в пределах Еты-Пуровского вала (см. рис. 3), меридиональное простирание цепочек интрузивных комплексов (гранитов, базитов и ультрабазитов) на теле выступов-горстов раннепалеозойской складчатости и наконец меридиональное положение региональной структуры растяжения Западной Сибири (Колтогорско-Уренгойского грабен-рифт) указывают на устойчивое близмеридиональное простирание оси регионального сжатия. Для такого положения осей напряжений (ось растяжения поперечна и близширотна) характерна правосторонняя кинематика для северо-западных разломов и левосторонняя – для северо-восточных. В соответствии с этими, казалось бы, противоречивыми данными объяснением различной кинематики для одних и тех же разломов могут служить известный факт миграции осей напряжений во времени и связанное с этим реверсивное развитие разломов и разнонаправленное движение по ним блоков фундамента на различных этапах развития. В противном случае необходимо признание, что закрытие Колтогорско-Уренгойского грабен-рифта на завершающем этапе герцинского тектогенеза происходило в результате не широтного, а косого близмеридионального сжатия или считать неверной интерпретацию кинематики раннемезозойских структур в пределах герцинской складчатости по [3]. Наложенный характер и структурная независимость проявления СГС от положения и простирания тектонических швов на теле фундамента Еты-Пуровского вала свидетельствуют о реактивации региональных разломов древних (“пайхойского” и “таймырского”) заложений в силовом поле новейших деформаций земной коры, реализованных в Западной Сибири на основе сдвигового поля напряжений и меридионального полярного сжатия. Различные сечения активизации сдвигов фундамента для тектонопары диагональных сколов обусловливают неопределенность формирования зональности структурно-тектонических (структуры, ловушки, коллекторы) и флюидодинамических (залежи УВ и сопутствующие им гидрохимические и гидродинамические аномалии) парагенезов на телах СГС. Изучение признаков новейшей активизации горизонтальных сдвигов фундамента, связанных с надранговыми кулисами шовной сдвиговой складчатости Западной Сибири, позволит перейти к картированию проницаемых зон и каналов разгрузки глубинных флюидов как основы нефтегазогеологического районирования недр. О внутрислойном горизонтальном сдвиге.
Роль фундамента не ограничивается локализацией плоскости горизонтальных сдвигов в вертикальном сечении СГС. Будучи границей раздела физических свойств “жесткого” фундамента и “пластического” чехла, поверхность фундамента является границей тектонического срыва, по которой тангенциальные напряжения сдвига в горизонтальной плоскости реализуются в деформациях пластического течения, послойного шарьирования и сдваивания разреза за счет черепичного перекрытия разорванных пластов в интервале вспарывания чехла оперяющими кулисами сдвигов фундамента (Гогоненков Г.Н., Кашик А.С., Тимурзиев А.И., 2007).
Модельное представление внутрислойного сдвига на примере Западно-Комсомольской площади позволяет оценить значение горизонтального сжатия (укорочения) пространства вследствие горизонтального сдвига в горизонтальной плоскости. Как видно из сейсмического профиля, проходящего параллельно оси сдвига, эффект укорочения снижается к кровле фундамента (рис. 4, А) и к кровле баженовской свиты верхней юры (рис. 4, Б). Коэффициент укорочения пласта (Ку), рассчитанный для средней части разреза как отношение суммарной длины разорванных фрагментов (nl ) первично сплошного пласта к остаточной длине деформированного пласта (L), превышает 1,25. Расчеты показывают, что в центральной шовной части горизонтального сдвига фундамента в интервале максимального внутрислойного сдвига осадочного чехла сокращение пространства достигает 1/3 первичного горизонтального залегания деформированной толщи. Понятно, что значение сокращения пространства в горизонтальной плоскости должно быть компенсировано кратным значением (без учета уплотнения пород) расширения пространства в вертикальной плоскости за счет приращения неседиментационной мощности. Следствием внутрислойного сдвига в горизонтальной плоскости на границе фундамента и чехла служат различные седиментационные аномалии: формирование аномального разреза баженовки и ачимовки (Гогоненков Г.Н., Кашик А.С., Тимурзиев А.И., 2007), реверсные разломы и другие явления, вызванные пластическим нагнетанием пород и локальными приразломными изменениями мощностей. Наиболее яркое явление, сопровождающее СГС – это зеркало складчатости (Гогоненков Г.Н., Кашик А.С., Тимурзиев А.И., 2007). Этим термином авторы статьи обозначают горизонтальное положение на теле антиклинального поднятия поверхности черепичного залегания разорванных компетентных пластов, формирующих в матриксе пластического заполнения структуру “домино” (в условиях растяжения это структура классического будинажа). Встречное падение структуры “домино” по разные стороны шва горизонтального сдвига по фундаменту идентифицирует направление действия максимальных касательных напряжений max. Индикатором ориентировки вектора max является и направление встречного заваливания оперяющих сбросов по разные стороны от шва магистрального сдвига. Важность этого наблюдения и связанного с ним открытия будет показана на результатах палеотектонических реконструкций Еты-Пуровского вала. Здесь же отметим, что для структур, осложненных горизонтальными сдвигами фундамента, применение классического метода анализа мощностей существенно ограничено и требуются коррективы его основ. В методологическом плане ревизия основ метода мощностей для палеотектонических реконструкций необходима для учета доли неседиментационной части в общей мощности отложений, измененных за счет тектонического нагнетания пород в зонах динамического влияния СГС. ВЫВОДЫ
|
|||||||||||||||||||||||
СПИСОК ЛИТЕРАТУРЫ: © А.И. Тимурзиев, Г.Н. Гогоненков, Журнал "Геология Нефти и Газа" - 2007-6. |